Solution for Final in Calculus A

Moad C 2009

1) Suppose that $h \neq 0$. Dividing by h we obtain

$$
\frac{f(x+h)-f(x)}{h}=2 x+h-1
$$

Taking the limit $h \rightarrow 0$ we obtain that it exists and equals to $2 x-1$. Hence $f^{\prime}(x)=2 x-1$, and so $f^{\prime}(2)=3$. Also, $f^{\prime \prime}(x)=2$, and hence $f^{\prime \prime}(2)=2$.
2) From left to right, the polynomial $p(x)$ has a maximum at $x=-2$ and this maximum point is above the x axis since it is given that $p(-2)=4$. Also $x=1$ is a minimum point and it also located above the x axis since $p(1)=1$. Similarly the maximum point at $x=5$ is located above the x axis. Hence, to the left of $x=-2$ the function $p(x)$ increases. Since polynomials has no asymptotes it follows that $p(x)$ intersects the x axis exactly once at a point left to $x=-2$. Similarly, $p(x)$ decreases to the right of $x=5$, and hence intersects the x axis exactly once at a point right to $x=5$. From the data it follows that $p(x)$ cannot intersect the x axis at $-2 \leq x \leq 5$. Hence $p(x)$ has two roots.
3) a) For the function to be continuous at $x=a$ we need that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$. Hence we get $\lim _{x \rightarrow a^{-}}(x+1)=\lim _{x \rightarrow a^{-}} x^{2}$ or $a+1=a^{2}$. Therefore $f(x)$ is continuous if and only if a is a root of the equation $x^{2}-x-1=0$. This equation has two roots.
b) From the data it follows that

$$
\lim _{x \rightarrow b}\left(\frac{1}{2} g(x)+\frac{1}{2} h(x)\right)=1 \quad \lim _{x \rightarrow b}\left(\frac{1}{2} g(x)-\frac{1}{2} h(x)\right)=\frac{1}{2}
$$

Hence

$$
\frac{3}{2}=\lim _{x \rightarrow b}\left(\frac{1}{2} g(x)+\frac{1}{2} h(x)\right)+\lim _{x \rightarrow b}\left(\frac{1}{2} g(x)-\frac{1}{2} h(x)\right)=\lim _{x \rightarrow b} g(x)
$$

Similarly we get $\lim _{x \rightarrow b} h(x)=\frac{1}{2}$. From this we deduce that $\lim _{x \rightarrow b} g(x) h(x)=\frac{3}{4}$.
4) For the term $\sqrt{1-x^{2}}$ to be well defined we need $-1 \leq x \leq 1$. Since square roots are always positive, it follows that $\sqrt{1+\sqrt{1-x^{2}}}$ is well defined. For $-1 \leq x \leq 1$ we have $0 \leq \sqrt{1-x^{2}} \leq 1$. Hence $\sqrt{1+\sqrt{1-x^{2}}} \leq 2$. From this we conclude that the domain of definition of $f(x)$ is $-1 \leq x \leq 1$.
5) Let $y=a x+b$ be the line which tangent the parabola. It intersects the x axis at $\left(-\frac{b}{a}, 0\right)$ and the y axis at $(0, b)$. Hence the area of the triangular is $S=-\frac{b^{2}}{2 a}$. Notice that a is negative and hence S is positive. Let $\left(x_{0}, y_{0}\right)$ denote the tangent point. Then $f^{\prime}\left(x_{0}\right)=a$. Hence, we have the following three equations

$$
y_{0}=a x_{0}+b ; \quad-2 x_{0}=a ; \quad y_{0}=4-x_{0}^{2}
$$

From these equation we obtain the relation $b=\frac{16+a^{2}}{16}$. Hence, if we plug this into S we obtain the function $S(a)=-\frac{\left(16+a^{2}\right)^{2}}{32 a}$, and we look for a point which will give us a minimum. We have

$$
S^{\prime}(a)=-\frac{1}{32 a^{2}}\left(4 a^{2}\left(16+a^{2}\right)-\left(16+a^{2}\right)^{2}\right)
$$

Solving the equation $S^{\prime}(a)=0$ we obtain $3 a^{2}=16$, and since a is negative we obtain $a=-\frac{4}{\sqrt{3}}$.
6) a) We have

$$
\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}+x\right)=\lim _{x \rightarrow-\infty} \frac{\left(\sqrt{x^{2}+2 x}+x\right)\left(\sqrt{x^{2}+2 x}-x\right)}{\left(\sqrt{x^{2}+2 x}-x\right)}=\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}\left(1+\frac{2}{x}\right)}-x}
$$

Since x is negative, we have $-x=\sqrt{x^{2}}$. Hence the above is equal to

$$
\lim _{x \rightarrow-\infty} \frac{2 x}{-x \sqrt{1+\frac{2}{x}}-x}=\lim _{x \rightarrow-\infty} \frac{2}{-\sqrt{1+\frac{2}{x}}-1}=-1
$$

b) Let $y=x^{x+1}$. Then $\ln y=(x+1) \ln x$. Hence $\frac{y^{\prime}}{y}=\ln x+\frac{x+1}{x}$. Thus, $y^{\prime}=y\left(\ln x+\frac{x+1}{x}\right)=$ $x^{x+1}\left(\ln x+\frac{x+1}{x}\right)$.
7) The function is differentiable for all x, and hence the only possible extreme points are points which satisfy $f^{\prime}(x)=0$. We have $f^{\prime}(x)=1-x-\left(e^{-x}-x e^{-x}\right)=1-x-(1-x) e^{-x}=$ $(1-x)\left(1-e^{-x}\right)$. Hence, either $1-x=0$ or $1-e^{-x}=0$. The possible solutions are $x_{1}=0$ and $x_{2}=1$. To the left of x_{1} and to the right of x_{2} we have $f^{\prime}(x)<0$, in $x_{1}<x<x_{2}$ we have $f^{\prime}(x)>0$. Hence $x_{1}=0$ is a minimum point and $x_{2}=1$ is a maximum point.

